Convert LHA Files Free

Professional LHA file conversion tool

Drop your files here

or click to browse files

Maximum file size: 100MB
10M+ Files Converted
100% Free Forever
256-bit Secure Encryption

Supported Formats

Convert between all major file formats with high quality

Common Formats

ZIP

ZIP Archive - universal compression format developed by Phil Katz (1989) supporting multiple compression methods. Built into Windows, macOS, and Linux. Uses DEFLATE algorithm providing good compression (40-60% reduction) with fast processing. Supports file encryption, split archives, and compression levels. Maximum compatibility across all platforms and devices. Perfect for file sharing, email attachments, web downloads, and general-purpose compression. Industry standard with virtually universal software support including built-in OS tools, mobile apps, and command-line utilities.

RAR

RAR Archive - proprietary format by Eugene Roshal (1993) offering superior compression ratios (10-20% better than ZIP) through advanced algorithms. Popular on Windows with WinRAR software. Supports recovery records for damaged archive repair, solid compression for better ratios, strong AES encryption, and split archives up to 8 exabytes. Excellent for long-term storage, large file collections, and backup scenarios. Common in software distribution and file sharing communities. Requires WinRAR or compatible software (not built into most systems).

7Z

7-Zip Archive - open-source format by Igor Pavlov (1999) providing the best compression ratio available (20-40% better than ZIP, 10-15% better than RAR). Uses LZMA and LZMA2 algorithms with strong AES-256 encryption. Supports huge file sizes (16 exabytes), multiple compression methods, solid compression, and self-extracting archives. Free from licensing restrictions and patent concerns. Perfect for maximizing storage efficiency, software distribution, and backup archives where size matters. Requires 7-Zip or compatible software but offers exceptional space savings.

Unix Formats

TAR

TAR Archive - Tape Archive format from Unix (1979) bundling multiple files and directories into single file without compression. Preserves file permissions, ownership, timestamps, and symbolic links critical for Unix systems. Often combined with compression (TAR.GZ, TAR.BZ2, TAR.XZ) for efficient distribution. Standard format for Linux software packages, system backups, and cross-platform file transfer. Essential for maintaining Unix file attributes. Works with streaming operations enabling network transfers and piping. Foundation of Unix/Linux backup and distribution systems.

GZ/TGZ

GZIP/TGZ - GNU zip compression format (1992) using DEFLATE algorithm, standard compression for Linux and Unix systems. TGZ is TAR archive compressed with GZIP. Fast compression and decompression with moderate ratios (50-70% reduction for text). Single-file compression commonly paired with TAR for multi-file archives. Universal on Unix/Linux systems with built-in 'gzip' command. Perfect for log files, text data, Linux software distribution, and web server compression. Streaming-friendly enabling on-the-fly compression. Industry standard for Unix file compression since the 1990s.

BZ2/TBZ2

BZIP2/TBZ2 - block-sorting compression format by Julian Seward (1996) offering better compression than GZIP (10-15% smaller) at the cost of slower processing. TBZ2 is TAR archive compressed with BZIP2. Uses Burrows-Wheeler transform achieving excellent ratios on text and source code. Popular for software distribution where size matters more than speed. Common in Linux package repositories and source code archives. Ideal for archival storage, software releases, and situations prioritizing compression over speed. Standard tool on most Unix/Linux systems.

XZ/TXZ

XZ/TXZ - modern compression format (2009) using LZMA2 algorithm providing excellent compression ratios approaching 7Z quality. TXZ is TAR archive compressed with XZ. Superior to GZIP and BZIP2 with ratios similar to 7Z but as single-file stream. Becoming the new standard for Linux distributions and software packages. Supports multi-threading for faster processing. Perfect for large archives, software distribution, and modern Linux systems. Smaller download sizes for software packages while maintaining fast decompression. Default compression for many current Linux distributions.

TAR.7Z

{format_tar_7z_desc}

TAR.BZ

{format_tar_bz_desc}

TAR.LZ

{format_tar_lz_desc}

TAR.LZMA

{format_tar_lzma_desc}

TAR.LZO

{format_tar_lzo_desc}

TAR.Z

{format_tar_z_desc}

TGZ

TGZ - TAR archive compressed with GZIP compression. Combines TAR's file bundling with GZIP's compression in single extension (.tgz instead of .tar.gz). Standard format for Linux software distribution and source code packages. Maintains Unix file permissions and attributes while reducing size 50-70%. Fast compression and decompression speeds. Universal compatibility on Unix/Linux systems. Perfect for software releases, backup archives, and cross-platform file transfer. Abbreviated form of TAR.GZ with identical functionality and structure.

TBZ2

TBZ2 - TAR archive compressed with BZIP2 compression. Better compression than TGZ (10-15% smaller) but slower processing. Uses Burrows-Wheeler block sorting for excellent text compression. Common in Linux distributions and software packages where size is critical. Maintains Unix file permissions and attributes. Perfect for source code distribution, archival storage, and bandwidth-limited transfers. Abbreviated form of TAR.BZ2 with identical functionality. Standard format for Gentoo Linux packages and large software archives.

TXZ

TXZ - TAR archive compressed with XZ (LZMA2) compression. Modern format offering best compression ratios for TAR archives (better than TGZ and TBZ2). Fast decompression despite high compression. Supports multi-threading for improved performance. Becoming standard for Linux distributions (Arch, Slackware use TXZ). Maintains Unix permissions and symbolic links. Perfect for large software packages, system backups, and efficient storage. Abbreviated form of TAR.XZ representing the future of Unix archive compression.

LZMA

LZMA/TAR.LZMA - Lempel-Ziv-Markov chain Algorithm compression format (2001) offering excellent compression ratios. TAR.LZMA combines TAR archiving with LZMA compression. Predecessor to XZ format using similar algorithm but older container format. Better compression than GZIP and BZIP2 but superseded by XZ/LZMA2. Still encountered in older Linux distributions and legacy archives. Slower compression than GZIP but better ratios (similar to XZ). Modern systems prefer TAR.XZ over TAR.LZMA. Legacy format for accessing older compressed archives from 2000s era.

LZO

LZO/TAR.LZO - Lempel-Ziv-Oberhumer compression format prioritizing speed over compression ratio. TAR.LZO is TAR archive compressed with LZO. Extremely fast compression and decompression (faster than GZIP) with moderate ratios (30-50% reduction). Popular in real-time applications, live systems, and scenarios requiring instant decompression. Used by some Linux kernels and embedded systems. Common in backup solutions prioritizing speed. Perfect for temporary compression, live CD/USB systems, and high-speed data transfer. Trade-off: larger files than GZIP/BZIP2/XZ but much faster processing.

Z

Z/TAR.Z - Unix compress format from 1985 using LZW (Lempel-Ziv-Welch) algorithm. TAR.Z is TAR archive compressed with compress command. Historical Unix compression format predating GZIP. Patent issues (until 2003) led to GZIP replacing it. Legacy format with poor compression by modern standards. Rarely used today except in very old Unix systems and historical archives. If you encounter .Z or .tar.Z files, convert to modern formats (TAR.GZ, TAR.XZ) for better compression and wider support. Important for accessing ancient Unix archives from 1980s-1990s.

Specialized Formats

ISO

ISO Image - ISO 9660 disk image format containing exact sector-by-sector copy of optical media (CD/DVD/Blu-ray). Standard format for distributing operating systems, software installations, and bootable media. Can be mounted as virtual drive without physical disc. Contains complete filesystem including boot sectors, metadata, and file structures. Essential for Linux distributions, system recovery media, and software archives. Used by burning software, virtual machines, and media servers. Universal standard with support in all major operating systems for mounting and burning.

CAB

Cabinet Archive - Microsoft's compression format for Windows installers and system files. Used extensively in Windows setup packages, driver installations, and system updates. Supports multiple compression algorithms (DEFLATE, LZX, Quantum), split archives, and digital signatures. Built into Windows with native extraction support. Common in software distribution for Windows applications, particularly older installers and Microsoft products. Maintains Windows-specific attributes and can store multiple files with folder structures. Part of Windows since 1996.

AR

AR Archive - Unix archiver format (1970s) originally for creating library archives (.a files). Simple format storing multiple files with basic metadata (filename, modification time, permissions). Used primarily for static libraries in Unix development (.a extension). Foundation format for DEB packages (Debian packages are AR archives containing control and data). Minimal compression support (none by default). Essential for Unix library management and Debian package structure. Standard tool 'ar' included on all Unix/Linux systems. Simple and reliable for static file collections.

DEB

Debian Package - software package format for Debian, Ubuntu, and derivative Linux distributions. Contains compiled software, installation scripts, configuration files, and dependency metadata. Used by APT package manager (apt, apt-get commands). Actually a special AR archive containing control files and data archives. Essential format for Debian-based Linux software distribution. Includes pre/post-installation scripts, version management, and dependency resolution. Standard packaging for thousands of Ubuntu/Debian applications. Can be inspected and extracted as regular archive.

RPM

RPM Package - Red Hat Package Manager format for Red Hat, Fedora, CentOS, SUSE, and derivative Linux distributions. Contains compiled software, installation metadata, scripts, and dependency information. Used by YUM and DNF package managers. Includes GPG signature support for security verification. Standard for Red Hat Enterprise Linux ecosystem. Supports pre/post-installation scriptlets, file verification, and rollback capabilities. Essential format for RHEL-based Linux software distribution. Can be extracted as archive to inspect contents without installation.

JAR

JAR Archive - Java Archive format based on ZIP compression for packaging Java applications. Contains compiled Java classes (.class files), application resources, and manifest metadata. Standard distribution format for Java applications and libraries. Supports digital signatures for code verification. Can be executable (runnable JAR files with Main-Class manifest). Perfect for Java application deployment, library distribution, and plugin systems. Compatible with ZIP tools but includes Java-specific features. Essential format for Java development and deployment since 1996.

ARJ

ARJ Archive - legacy DOS compression format by Robert Jung (1991). Popular in DOS and early Windows era for its good compression ratio and ability to create multi-volume archives. Supports encryption, damage protection, and archive comments. Largely obsolete today, replaced by ZIP, RAR, and 7Z. Still encountered in legacy systems and old software archives. Requires ARJ or compatible decompression software. Historical format important for accessing old DOS/Windows archives from 1990s. Better converted to modern formats for long-term accessibility.

LHA

LHA Archive - Japanese compression format (also LZH) developed in 1988, extremely popular in Japan and with Amiga users. Uses LZSS and LZHUF compression algorithms providing good ratios. Common for Japanese software distribution in 1990s. Supports archive headers, directory structures, and file attributes. Legacy format now mostly replaced by modern alternatives. Still encountered in retro computing, Japanese software archives, and Amiga communities. Requires LHA/LZH compatible software for extraction. Important for accessing Japanese and Amiga software archives.

CPIO

CPIO Archive - Copy In/Out archive format from Unix (1970s) for creating file archives. Simpler than TAR, often used for system backups and initramfs/initrd creation. Standard format for Linux initial RAM disk images. Supports multiple formats (binary, ASCII, CRC). Better handling of special files and device nodes than TAR. Common in system administration, bootloader configurations, and kernel initrd images. Universal on Unix/Linux systems. Essential for system-level archiving and embedded Linux systems. Works well for streaming operations.

How to Convert Files

Upload your files, select output format, and download converted files instantly. Our converter supports batch conversion and maintains high quality.

Frequently Asked Questions

What is an LHA file and why was it so widely used in classic computing?

An LHA file (also seen as LZH) is a compressed archive created using the LHarc/LHA compression algorithm, extremely popular in the late 1980s and 1990s on MS-DOS, Amiga, and early Windows systems. It offered strong compression, high reliability, and simple command-line usage, making it a preferred format for distributing software, game mods, and shareware.

LHA was especially favored in Japan, where many PC-98, Windows, and gaming-related applications were exclusively distributed in LZH format. This regional popularity kept LHA relevant long after ZIP became global mainstream.

Although mostly replaced by ZIP, RAR, and 7Z today, LHA remains crucial for retro-computing, game preservation, and unpacking old software archives that still use LZH compression.

Why did LHA compress better than early ZIP tools?

LHAโ€™s LH5 and LH6 compression methods used aggressive LZSS + Huffman coding, outperforming early PKZIP versions, especially for executables, text, and classic game data.

Its dictionary and block-handling strategies were more advanced for the era, achieving smaller sizes without excessive processing time.

LHA also allowed fine-tuning of compression modes, letting users choose faster or tighter compression depending on their needs.

Why do LHA files extract slowly on modern hardware?

LHAโ€™s algorithms were optimized for CPUs from the 1980s and do not take advantage of modern multithreading or hardware acceleration.

Some LZH variants require decompressing long chains of encoded blocks, which slows extraction compared to more modern formats like 7Z or Zstandard.

Compatibility layers used by modern tools may not be fully optimized, adding extra overhead during extraction.

Why do some LHA files fail with 'unknown method' errors?

Different LHA versions introduced additional compression methods such as LH7 and LH8, not all of which are supported by every extractor.

Some archives created in Japan used modified or proprietary LZH variants that break compatibility with standard tools.

Corrupted headers or incomplete downloads can cause extractors to misidentify the compression method entirely.

Why are some LHA archives larger than expected?

Multimedia files such as JPEG, MP4, and WAV are already compressed and do not shrink further under LHA's algorithm.

Older executables and binaries may compress well, but modern binary data often contains patterns less suited to LZSS compression.

LHA lacks advanced modeling and dictionary improvements seen in newer formats like 7Z, so results vary widely by content type.

Is LHA secure enough for protected archives?

LHA includes password protection, but its cryptographic strength is extremely outdated and vulnerable to modern brute-force attacks.

Because its encryption system was never designed for modern security standards, it should not be used for sensitive data.

For safety, wrap LHA files in external encryption (e.g., GPG or encrypted ZIP containers) before storing confidential material.

Why does LHA sometimes overwrite files without warning?

Classic LHA tools followed DOS conventions, automatically replacing files during extraction unless instructed otherwise.

Modern extractors imitate this legacy behavior for compatibility, causing unexpected overwrites if extraction paths aren't isolated.

Extract LHA archives into empty directories or use overwrite-blocking options to avoid data loss.

Why do LHA files behave differently across systems?

Windows, Linux, and macOS extraction tools differ in how they handle LZH metadata, filenames, and multi-byte Japanese text encodings.

Some LHA archives rely on Shift-JIS encoding, which may appear corrupted on systems expecting UTF-8.

Older LHA tools preserved DOS file attributes that may not map cleanly onto modern POSIX filesystems.

Can LHA archives be repaired?

LHA includes CRC checks but has limited recovery options, making heavy corruption difficult to fix.

Some tools attempt partial extraction from damaged archives, but success varies widely depending on where corruption occurs.

If the header is damaged, recovery becomes significantly more difficult because LHA relies on strict metadata structures.

Why did LHA become a standard in Japanese Windows applications?

LHA was widely distributed with Japanese utilities, BBS systems, and PC-98 platforms, becoming a cultural default in Japanโ€™s early PC era.

Government and corporate software releases in Japan mandated or recommended LZH, reinforcing its dominance for years.

Even now, many Japanese retro archives, gaming patches, and preservation sites continue using LHA for compatibility.

Why does LHA sometimes fail on long filenames?

Classic LHA predates long filename support and uses DOS-style 8.3 naming, causing truncation during extraction.

Some extended LHA implementations added partial long filename support, but compatibility is inconsistent.

Modern extractors may rename files or append numeric identifiers to avoid collisions.

Why does LHA still show up in retro gaming and emulation communities?

Many Amiga, MS-DOS, and PC-98 game mods, patches, and scene releases were distributed as LZH and remain preserved in that format.

Emulators often include automatic LHA support for authenticity and compatibility with historical archives.

Game resource extraction tools and fan translation kits frequently rely on legacy LZH bundles.

Why does LHA struggle with modern Unicode filenames?

LHA predates Unicode, so filenames encode using ANSI or Shift-JIS, causing issues on modern UTF-8 systems.

Extractors may misinterpret byte sequences, leading to garbled or unreadable filenames.

Modern tools include partial workarounds but cannot fully resolve the lack of Unicode design in the original format.

Is LHA obsolete?

In mainstream computing, yesโ€”more advanced formats like ZIP, RAR, and 7Z outperform LHA in compression and usability.

However, LHA remains valuable in retro computing, archival restoration, and compatibility scenarios involving historic software.

Its cultural and technical legacy ensure LHA will continue to exist where exact preservation of old archives matters.

Should you use LHA today?

Use LHA only when working with legacy archives, retro systems, or software packages that explicitly require LZH compatibility.

For everyday compression and secure storage, modern formats provide far superior performance and safety.

LHA is best treated as a specialty format preserved for historical accuracy rather than a practical choice for modern workflows.